Aufgabe	1	2	3	4	5	6	7	8
Punkte (je 10								
	udiengang:						n Klausurerg	
BSc Chemie □ F	RegioCh. □	l Polyv. B	Sc \square Anga	be der Mati	rikelnumme	r im Web b	ekanntgegeb	en wird:
	A 1 1	1 01 1	/ TN T 1	11	T 7	1		
	Abscr	ılußklaus	•					
		Cnemi	e der iv	<u>Ietalle</u>	(AC-11))		na 10 2020
Namai		_Vorname			Motni	kel-Nr	U)2.10.2020
Name:		_vorname	•		Wau11	Kei-IVI		
Hinweis: Verwenden	Sie für die A	ntworten de	n hinter der	ı Fragen frei	gelassenen l	Raum. Falls	dieser nicht	ausreichen
sollte, benutzen Sie	die Blattrück	seiten und	machen Sie	bei der Fra	ge einen en	tsprechende	n Verweis.	
Erläutern S	ie Funktion	n und Eins	satz der in	n der Proz	zessierung	von Meta	ıllen und 1	Metallver-
bindungen e	eingesetzte	n technis	chen Ap	parate.				
(a) Drehro	hrofen							
(a) Dieme	moren							
(b) Konver	rter							
(c) Flotati	onszelle							

(d) Downs-Zelle

2 Cobalt kommt sowohl zwei- als auch dreiwertig vor.	
 (a) In zwei Hochtemperatursynthesen wurde die Herstellung farbiger keramischer Materialien (Pigmente) gezeigt, die Co(II) in tetraedrischer Koordination enthalten. i. Nennen Sie die Summenformeln und den Strukturtyp von • 'Thenards-Blau' • 'Rinmanns Grün' ii. Warum ist es wichtig für die Farbigkeit, dass Co(II) in tetraedrischer Umgebung vorliegt? 	
iii. Welches Produkt (mit welcher Farbe und welchem Strukturtyp) entstehen, wenn man für die o.g. Schmelzreaktionen zu viel Cobalt einsetzt?	1
(b) Die meisten einfachen oktaedrischen Werner-Komplexe enthalten dagegen Cobalt(III) i. Begründen Sie, warum diese Oxidationsstufe hier so deutlich bevorzugt ist.	

ii. Skizzieren Sie alle Isomere des Komplex-Kations $[Co(en)_2Cl_2]^+$ (en=ethylendiamin) und benennen Sie diese jeweils korrekt.

③	Rea	en Versuchen zur Vorlesung (diesmal nur Videos) haben wir einige sehr exotherme ktionen gezeigt. Formulieren Sie zu den beschriebenen Reaktionen die Gleichungen se stöchiometrisch genau).
	(a)	Reaktion von Eisenoxid mit elementarem Aluminium (nach Zündung)
	(b)	Verbrennen von elementarem Kalium an Luft
	(c)	Reaktion von Aluminium mit Natronlauge
	(d)	Reaktion einer basischen Lösung von Oxido-Ferrat(VI) mit Wasser
	(e)	Reaktion von elementarem Calcium mit Wasser
	(f)	Reaktion von wasserfreiem Aluminiumchlorid mit Wasser
	(g)	Zersetzung von festem Ammoniumdichromat (nach Zündung)
	(h)	Reaktion von gebranntem Kalk mit Wasser

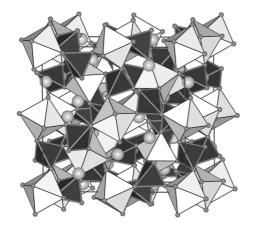
4		ngan und Magnesium haben zwar einige Ähnlichkeiten, letztlich bestimmen aber doch deutlichen Unterschiede Chemie und Verwendung.
	(a)	Begründen Sie aus der Elektronenkonfiguration der beiden Elemente, warum beide einheitlich zweiwertige Kationen bilden und z.B. als Monoxide $[MO; s. (d), (e)]$ oder einfache Carbonate ['Spate', MCO_3 , (b) und (c)] vorkommen.
	(b)	MnCO_3 hat eine blass-rosa Farbe ('Himbeerspat'). Worauf basiert die Färbung?
	(c)	MgCO ₃ (Magnesit) wird zur Magnesium-Gewinnung eingesetzt. Formulieren Sie die Reaktionsgleichungen der drei Prozess-Schritte: i. Brennen von Magnesit: ii. Carbochlorierung: iii. Elektrolyse:
	(d)	Welche magnetischen Eigenschaften erwarten Sie für die Monoxide (beide NaCl-Typ)?
	(e)	Welche praktischen Bedeutungen hat MgO und worauf basieren die Anwendungen jeweils?
	, ,	Beim Verbrennen der beiden Elemente an Luft entstehen die gleichen Stickstoffverbindungen, aber unterschiedliche Sauerstoffverbindungen. Formulieren Sie die zugehörigen Reaktionsgleichungen: $-N_2$:
	+	$-O_2$:
	(g)	Beschreiben Sie (mit Reaktionsgleichung) die Bedeutung von Mangandioxid im Leclanché-Element (konventionelle Batterie).

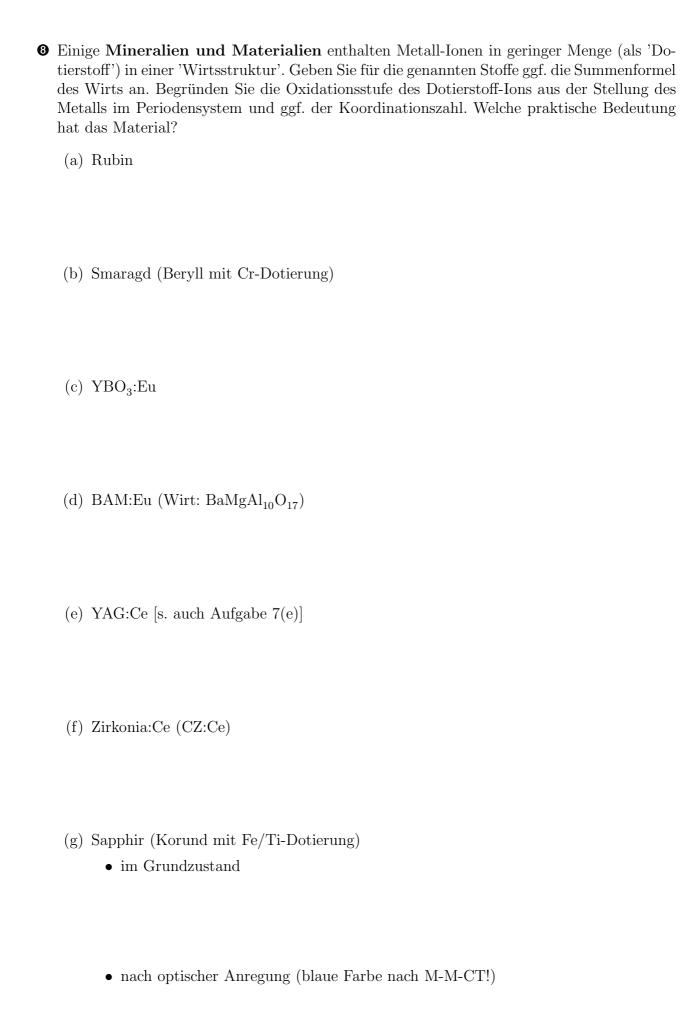
• Metalle bilden sehr unterschiedliche Verbindungen mit Kohlenstoff ('Carbide').
(a) <u>Calcium</u> carbid ist ein typisches salzartigen Carbid.
i. Formulieren Sie die technische Herstellung sowie die Reaktion mit Wasser.
ii. Beschreiben Sie den prinzipiellen Aufbau der Struktur.
(b) Das Carbid von <u>Lithium</u> , LiC ₆ , ist als Elektrodenmaterial essentiell.
i. Beschreiben Sie die elektrochemische Herstellung von ${\rm LiC_6}.$ (Spannungen, Lösungsmittel etc.).
ii. Skizzieren Sie wieder den prinzipiellen Aufbau der Struktur. Welche Koordinationszahlen haben Li und C?
iii. Formulieren Sie die Grundgleichung für den Entladevorgang eines Li-Ionenakkus.
(c) <u>Aluminium</u> carbid ist eines der wenigen Metallcarbide, das mit Wasser Methan freisetzt. Formulieren Sie diese Reaktion (stöchiometrisch genau).
(d) Beschreiben Sie die Bedeutung von Fe_3C bzw. des in <u>Eisen</u> gelösten Kohlenstoffs für die Eigenschaften von Stahl. Welche Koordinationszahl hat der Kohlenstoff hier?
(e) Rechts sehen Sie die hexagonale Elementarzelle von <u>Wolfram</u> carbid, WC.
i. Welche Koordinationszahl und -polyeder haben W und C hier?

ii. Welche Eigenschaft und daraus resultierende praktische An-

wendung hat WC?

	n, Symmetrie, Ausdehung und energetische Lage der d-Orbitale bestimmen die gesamhemie der Übergangsmetalle.
(a)	Skizzieren Sie ein $d_{x^2-y^2}$ -'Orbital' (mit Vorzeichen der Wellenfunktion und korrekter Orientierung im kartesichen Koordinatensystem).
(b)	Wo liegt das zugehörige Energieniveau dieses Orbitals (in Relation zur gemittelten Lage aller d -Orbitale) im oktaedrischen, tetraedrischen und im quadratisch-planarem Ligandenfeld? Begründen Sie Ihre Aussage exemplarisch für das oktaedrische Ligandenfeld.
(c)	In einer Versuchsreihe haben wir Ni(II)-Komplexe mit den drei Geometrien aus (b) gezeigt. Formulieren Sie jeweils die Produkte. Welche Farben und welche magnetischen Eigenschaften haben sie? • Auflösen von NiSO ₄ in Wasser: • Zugabe von konzentrierter Salzsäure: • Fällung von Ni(II) mit Dimethylglyoxim, dmg ('DADO'):
(d)	Geben Sie für das letzte Produkt aus (c) die vollständige Valenzstrichformel an und beschreiben Sie die Anordnung der Komplexe in der Kristallstruktur.
(e)	Das sog. $Krogmann'sche\ Salz,\ K_2[Pt(CN)_4]Br_{0.3}\cdot 3H_2O,$ hat eine sehr ähnliche Packung der Komplexe im Kristall. Es bildet Nadeln mit metallischer Leitfähigkeit entlang der Nadelachse. Worauf beruht diese Eigenschaft? (Hinweis: Orbitalbesetzung und die Anordnung der Pt-Ionen zueinander betrachten!)


- Viele Metalle und Metallverbindungen kristallisieren in **kubischen Strukturtypen**. Skizzieren Sie die Elementarzellen der genannten Kristallstrukturen, benennen Sie das Koordinationspolyeder des/der Metall-Atoms/Ions und nennen Sie je eine weitere Verbindung dieses Strukturtyps.
 - (a) Caesiumchlorid-Typ


(b) Wolfram-Typ

(c) Zinkblende-Typ

(d) Perowskit-Typ

(e) Granat-Typ (Bitte Atome bezeichnen und die Summenformel aus der Struktur ableiten).

