2.1. Luftzerlegung

2. Technische Gase

http://ruby.chemie.uni-freiburg.de/Vorlesung/Seminare/luftzerlegung.pdf

Caroline Röhr, Burkhard Butschke

Vorlesung: Technische Anorganische Chemie, WS 24/25

Inhalt (Prozess- und Stoff-Auswahl)

- Einleitung
- @ Gase
 - Edelgase, N₂, O₂ (Luftzerlegung, Rektifikation)
 - Ammoniak (inkl. Wasserstoff; Gasreaktion)
- 3 Salze
 - KCl (Feststoffprozessierung ohne Stoffumwandlung)
 - Na₂CO₃ (reziproke Umsetzung)
 - Phosphate (Neutralisations- und Verdrängungsreaktionen)
 - Chlorate und Perchlorate (elektrochemische Oxidation)
- Säuren
 - Schwefelsäure (über Gasreaktionen)
 - Essigsäure (homogene Katalyse)
 - Phosphorsäure (durch Verdrängungsreaktionen)
 - Salpetersäure
- 6 Basen
 - Chloralkali-Elektrolyse
- 6 Metalle
 - Eisen, Stahl
 - Kupfer
 - Aluminium
- 7 Weitere Anorganische Grund- und Wertstoffe
 - Zementklinker, Gläser, Düngemittel, Hochtemperaturwerkstoffe, Explosivstoffe, Halbeiter (Si), Pigmente (Carbon-Black, TiO₂), ..., ..., ..., ...

- Einleitung
- 2 Luftverflüssigung (LINDE-Verfahren, Schritt 1)
- 3 Grundlagen technischer Rektifikationen
- ♠ Kryogene Luftzerlegung (LINDE-Verfahren, Schritt 2)
- **6** Alternative: Pressure Swing Adsorption (PSA)
- 6 Produkte: Verwendung, Produktion, Kosten
- 7 Literatur, Quellen

- Einleitung
- 2 Luftverflüssigung (LINDE-Verfahren, Schritt 1)
- 3 Grundlagen technischer Rektifikationen
- Kryogene Luftzerlegung (LINDE-Verfahren, Schritt 2)
- **6** Alternative: Pressure Swing Adsorption (PSA)
- 6 Produkte: Verwendung, Produktion, Kosten
- 7 Literatur, Quellen

Einleitung

- thermische Trennverfahren, ohne Stoffumwandlung
 - Allgemeines
 - Basics PC
 - Rechenverfahren zur Rektifikation
 - Auslegung, Bauarten von Kolonnen
 - DIE Methode zur Trennung von KW
- ightharpoonup Luft als Rohstoff \Rightarrow
 - Gewinnung von O₂, N₂, Ar, Kr und Xe
 - kein Abbau und damit verbundene praktische Probleme
- ▶ hieraus: N_2 , O_2 (Δ Sdp. = 13 °C)
- dazu Edelgase: Ar (Kr und Xe)
- ▶ 'kryogene' Gewinnung in 2 Schritten:
 - 1 Verflüssigung der Luft
 - 2 Destillative Zerlegung (TT/Druck-Rektifikation)
- ▶ Alternative: Pressure Swing Adsorption (PSA)

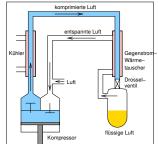
	Vol-%	Siedepunkte			
		$[^{\circ}C]$	[K]		
Не	0.0005	-269	4		
Ne	0.002	-246	27		
N_2	78	-196	$77 (95^a)$		
Ar	0.9	-186	87		
O_2	21	-183	$90 (110^b)$		
${\rm Kr}$	0.0001	-153	120		
Xe	0.00001	-108	165		

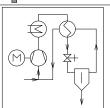
 $[^]a$ bei p=5 bar

 $^{^{}b}$ bei p=5 bar

- Einleitung
- 2 Luftverflüssigung (LINDE-Verfahren, Schritt 1)
- 3 Grundlagen technischer Rektifikationen
- Kryogene Luftzerlegung (LINDE-Verfahren, Schritt 2)
- 6 Alternative: Pressure Swing Adsorption (PSA)
- 6 Produkte: Verwendung, Produktion, Kosten
- 7 Literatur, Quellen

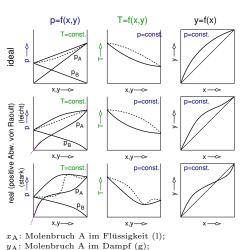
Luftverflüssigung (LINDE-Verfahren): Prinzip/PC


► JOULE-THOMSON-Effekt


- reale Gase verletzten Boyle-Mariotte-Gesetz ($pV\!=\!\mathrm{konst.}$)
- \bullet bei RT positive JT-Koeffizienten (außer He, ${\rm H_2})$
- ullet Druckerhöhung \mapsto Erwärmung
- $\bullet \; \mapsto \; \text{Entspannen komprimierter Gase} \; \mapsto \; \text{Abkühlung}$
- bei Luft: je 1 bar Entspannung

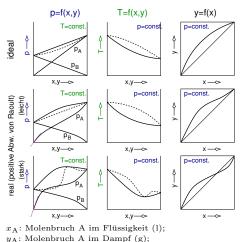
 nur ca. ¹/₄°C
 Abkühlung

► Kompression/Entspannung im Gegenstromprinzip


- Kompression (dabei Erwärmung) bis ≈ 20 MPa = 200 bar $\mapsto +50$ °C
- Abkühlen = Abführen der Kompressionswärme
- \bullet Entspannen durch Drosselventil \mapsto Abkühlung bzw. Verflüssigung
- erneute Kompression usw. usw. (kontinuierliches Gegenstromverfahren)
- ► Apparate (ohne Details)
 - Kompressor und Drosselventil
 - Wärmetauscher* (s. Poster)

- Einleitung
- 2 Luftverflüssigung (LINDE-Verfahren, Schritt 1)
- 3 Grundlagen technischer Rektifikationen
- Kryogene Luftzerlegung (LINDE-Verfahren, Schritt 2)
- 6 Alternative: Pressure Swing Adsorption (PSA)
- 6 Produkte: Verwendung, Produktion, Kosten
- 7 Literatur, Quellen

Mischphasen-Thermodynamik (Wdh. PC)


ideale Mischungen

$$p = f(x,y)$$

- T=konst. \mapsto RAOULT'sches Gesetz
- Partialdrucke: p_A ∝ x_A
- Gesamtdruck: $p = p_A + p_A$
- ___: p auf Zusammensetzung in Flüssigkeit (x) bezogen
- ___: p auf Zusammensetzung im Dampf (y) bezogen
- $ightharpoonup T = f(x,y) \ (p=\text{konst.})$
 - Auftragung von x (___) bzw. y (_ _ _) gegen T
 - \Downarrow Bestimmung von x/y-Paaren bei konstantem T
- y = f(x) (p=konst.)
 - x y des Leichtsieders
 - → graphische 'Berechnungen' ↓

A = Leichtsieder

Mischphasen-Thermodynamik (Wdh. PC)

reale Mischungen

- ▶ positive Abweichung von RAOULT
 - häufiger, wichtig bei Rektifikation

 - Anfangssteigung größer
 - größere Siedelinse
 - stark: Negativ-Azeotrop → keine destillative Trennung möglich
 - $\bullet\,$ z.B. ${\rm H_2O\text{-}Dioxan},\,{\rm H_2O\text{-}Ethanol}$
- ▶ negative Abweichung von RAOULT
 - \ominus Mischungsenthalpie (exotherm)
 - Positiv-Azeotrop
 - seltener, z.B. HNO_3-H_2O

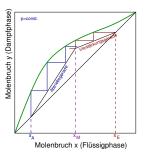
bei Luft

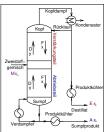
- nahezu ideales Verhalten
- ▶ ! nur 10 ° *T*-Differenz
- ▶ sehr hohe Reinheit gefordert (ppm)
- ightharpoonup bis über 100 Trennstufen

A = Leichtsieder

Berechnung von Rektifikationsanlagen

einfache Verfahren

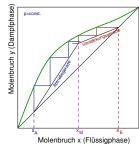

- 2 PONCHON-SAVARIT-Verfahren
- Trennfaktorverfahren
- 4 dynamische Verfahren (HTU-Verfahren, vor allem für Füllkörperkolonnen)

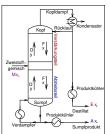

Ziel der Berechnungen

- ▶ aus thermodynamischen Daten (s.o.)
- bei geforderten Reinheiten von Sumpf-/Kopf-Produkt
- ▶ ideales Rück/Zulauf-Verhältnis bestimmen
- ▶ Zahl der theoretischen Böden für Abtriebs- und Verstärkungsteil der Säule

① Mc-Cabe-Thiele-Verfahren

- Voraussetzungen, Vereinfachungen
 (D, F: Dampf/Flüssigkeits-Ströme, eigentlich D, F)
 - Gleichgewicht auf jedem Boden
 - \dot{D} und \dot{F} über Kolonne konstant ($\Delta_{\rm V} H$ beider Stoffe vergleichbar)
 - keine Mischungswärme
 - Dampf wird immer vollständig kondensiert
 - kein Druckabfall
 - streng adiabatisch (keine Wärmeverluste)
 - einfachster Fall: Zulauf mit Siedetemperatur

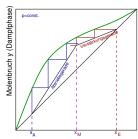

① Mc-Cabe-Thiele-Verfahren

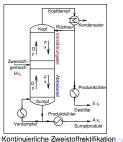

Massenbilanz am Kondensator

- Gesamtbilanz: D = F + E
- Bilanz Leichtsieder: $Dy = Fx + Ex_e$
- $\mapsto (F+E)y = Fx + Ex_e \mapsto y = \frac{F}{F+E}x + \frac{E}{F+E}x_e$
- mit dem Rücklauf-Verhältnis $v = \frac{F}{F}$
- \mapsto Verstärkungsgerade: $y = \frac{v}{v+1}x + \frac{1}{1+v}x_e$

► Massenbilanz am Verdampfer

- Gesamtbilanz: D' = F' A
- Bilanz Leichtsieder: $D'y = F'x Ax_a$
- $\mapsto (F' A)y = F'x Ax_a \mapsto y = \frac{F'}{F' A}x + \frac{A}{F' A}x_e$
- mit F' = F + M (Zulauf mit Siedetemperatur)
- Gesamtbilanz Gesamtkolonne: A = M E
- $\mapsto y = \frac{F+M}{F+F}x + \frac{M-E}{F+F}x_a$
- mit dem Zulauf-Verhältnis $u = \frac{M}{F}$
- \mapsto Abtriebsgerade: $y = \frac{v+u}{v+1}x + \frac{u-1}{1+v}x_a$




① Mc-Cabe-Thiele-Verfahren

- Massenbilanzen
 - Verstärkungsgerade: $y = \frac{v}{v+1}x + \frac{1}{1+v}x_e$ (Kondensator)
 - Abtriebsgerade: $y = \frac{v+u}{v+1}x + \frac{u-1}{1+v}x_a$ (Verdampfer)
- ► Treppenzug-Verfahren
 - auf Böden: GG = Punkt auf grüner x/y-Linie (PC)
 - zwischen Böden: Bilanz durch Verstärkungs- bzw. Abtriebs-Gerade gegeben
- ► Grenzfälle
 - totaler Rücklauf: $v \to \infty$
 - Achsenabschnitt beider Geraden = 0
 - y = x (Diagonale)
 - E = 0 (kein Produkt!)
 - n minimal
 - minimaler Rücklauf: $v = v_{\min}$
 - $tg\alpha = \frac{v_{\min}}{v_{\min}+1}$ (Zwickel) \leftarrow Steigung der Verstärkungsgeraden
- üblich: $v_{\rm opt} \sim (1.3...2.0) v_{\rm min}$
- ightharpoonup Zahl der Trennstufen n (mit S: Verstärkungsfaktor)
 - $n_{\text{prakt}} = \frac{n_{\text{theo}}}{S}$

• bei Rektifikationen typisch: S = 0.6 - 0.8

14 / 31

Berechnung von Rektifikationsanlagen (Wdh.)

einfache Verfahren

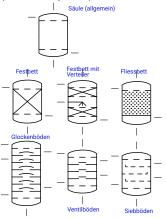
- McCabe-Thiele-Verfahren

 ✓
- 2 Ponchon-Savarit-Verfahren
- 3 Trennfaktorverfahren
- 4 dynamische Verfahren (HTU-Verfahren, vor allem für Füllkörperkolonnen)

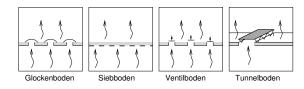
Ziel der Berechnungen

- ▶ aus thermodynamischen Daten (s.o.)
- bei geforderten Reinheiten von Sumpf-/Kopf-Produkt
- ▶ ideales Rück/Zulauf-Verhältnis bestimmen
- Zahl der theoretischen Böden für Abtriebs- und Verstärkungsteil der Säule

Praktisches


praktische Anforderungen

- ightharpoonup hoher Verstärkungsfaktor S
 - Bodenkolonnen: 0.6 bis 0.8
 - > 1 möglich, wenn Dampf und Flüssigkeit im Kreuzstrom geführt werden
- ▶ Belastungsflexibilität ('Durchregnen')
- geringer Druckabfall
- ightharpoonup \mapsto Strömungslehre: Druckabfall steigt ...
 - ... mit Dampfgeschwindigkeit
 - ... mit Absolutdruck in der Kolonne
 - ... bei kleinerem Lochdurchmesser (bei Siebböden)
 - ... bei größerem Glockendurchmesser (Glocken-B.)


Dimensionierung von Bodenkolonnen

- ▶ Dimensionierung von Bodenkolonnen
 - Kolonnendurchmesser
 - Kolonnenhöhe: $H = n_{\text{prakt}} H_B$
 - Bodenabstand H_B meist ca. 0.4 bis 1 m

K: Kolonnen mit Einbauten (ISO-10628 Symbole)

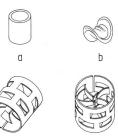
Technische Konstruktionen I: Bodenkolonnen

Glockenboden

- 🗸 große Belastungsflexibilität
- × hoher Druckabfall
- × aufwendige Herstellung
- ✓ kann nicht so schnell leerlaufen

► Siebboden

- ✓ geringer Druckabfall wegen niedrigem Flüssigkeitsstand
- ✓ geringe Herstellungskosten
- ✗ geringerer Belastungsbereich (Durchregnen)
- 🗶 Kolonne läuft ggf. schnell leer
- × verschmutzungsanfällig


- ► Ventilboden (bewegliche 'Deckel')
 - ✓ großer Belastungsbereich
 - $\checkmark\,$ hoher Verstärkungsfaktor S
 - × teuer

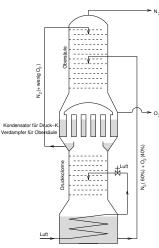
► Tunnelboden

- Flüssigkeitsführung ohne Rückvermischung möglich
- \checkmark hoher Verstärkungsfaktor S

Technische Konstruktionen II: Füllkörperkolonnen (Random-Packing)

- ► Füllkörper-Schüttungen
- ightharpoonup verschiedenste Füllkörper (Formen, Materialien) möglich ightarrow
- ▶ Vor- und Nachteile gegenüber Bodenkolonnen
 - ✓ bessere Trennwirkung als Bodenkolonnen
 - ✓ geringer Druckabfall
 - 🗸 geringer Rückhalt
 - ✓ verschiedene Materialauswahl möglich
 - ✓ kostengünstiger
 - ✗ Randgängigkeit → Flüssigkeit alle 2-3 m neu verteilen
 - 🗶 geringe Belastungsflexibilität
 - ✗ empfindlich gegen Verunreinigungen

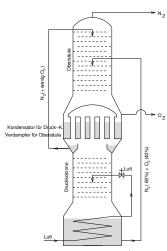
- a: Raschig-Ringe
- b: Berl-Sättel Wendeln, Intalox-Sattelkörper usw.
- c: Pall-Ringe
- x: Wendeln, Intalox-Sattelkörper usw.


Technische Konstruktionen III: Packungskolonnen (strukturierte P.)

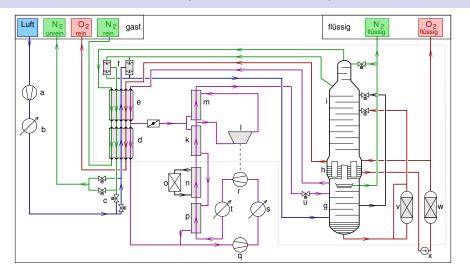
- gefaltete Drahtgewebe ('Sulzer'-Packungen)
- ▶ besonders geeignet für Vakuum-Betrieb (großer V-Unterschied 1/g
- ▶ weitere Anwendungen
 - C3/C4-Splitter
 - Quench-Kolonnen, Amin-Wäschen
 - Feinchemikalien
- ▶ Vor- und Nachteile
 - ✓ geringer Druckabfall
 - ✓ hohe Gasbelastungen
 - ✓ sehr gute Trennwirkung (kleine HETP-Werte)
 - × teuer
 - $\pmb{\times}$ relativ empfindlich gegen Verun
reinigungen \mapsto 'Grid'-Packungen
- Links zu Herstellern
 - Fa. RVT (Marktrodach)
 - Füllkörper
 - geordnete Packungen
 - Fa. Envimac Engineering GmbH (Oberhausen)
 - Füllkörper
 - Fa. Sulzer (Winterthur, CH)
 - Strukturierte Packungen
 - Random-Packings
 - Trays (Sieb-, Tunnel- und Glockenböden)

- Einleitung
- 2 Luftverflüssigung (LINDE-Verfahren, Schritt 1)
- 3 Grundlagen technischer Rektifikationen
- ♠ Kryogene Luftzerlegung (LINDE-Verfahren, Schritt 2)
- **6** Alternative: Pressure Swing Adsorption (PSA)
- 6 Produkte: Verwendung, Produktion, Kosten
- 7 Literatur, Quellen

LINDE-Verfahren: Trennkolonne


- ▶ N₂/O₂-Trennung durch doppelte TT-Rektifikation
- zwei gekoppelte Kolonnen
- ▶ meist mit Glocken- oder Siebböden
 - kaum Verschmutzungsgefahr
 - niedriger Bodenabstand (ca. 30 cm)
 - \bullet \oslash bis 7 m
 - Durchsatz bis 500 000 m³/h
- ► Kolonne gut isoliert ('Cold-Box')
- in beiden Kolonnen
 - Kopfprodukt: N₂-reicher (niedrigerer Siedepunkt)
 - \bullet Sumpfprodukt: O $_2$ -reicher (höherer Siedepunkt)
- ▶ Druck-Kolonne (unten)
- ▶ Obersäule

T-x-Diagramme bei p=1/5 bar


LINDE-Verfahren: Trennkolonne

- ▶ Druck-Kolonne [unten, p = 0.6 MPa (6 bar)]
 - \bullet alle Siedepunkte ca. 20 °C höher als bei Normaldruck
 - Aufgabe verflüssigter Luft (trocken, CO_2 -frei) auf ca. $\frac{1}{2}$ der Kolonne
 - Kondensator der Druckkolonne = Verdampfer der Obersäule
 - \bullet Sumpf: ca. 40 % ${\rm O}_2$ (Vorzerlegung der Luft)
 - Kopf: fast reiner $N_2^- \mapsto Aufgabe$ weit oben in Obersäule
- ightharpoonup Obersäule [p = 0.14 MPa (1.4 bar)]
 - gespeist vom Sumpf der Druck-Kolonne (ca. 40 % O_2)
 - \bullet Sumpf: sehr reines ${\rm O}_2$ (l)
 - Kopf: reines N₂ (l oder g)
- Gesamtanlage
 - Airproducts: Poster
 - UIG: Bildergalerie

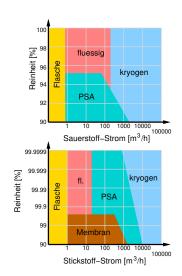
T-x-Diagramme bei p=1/5 bar

Beispiel einer Gesamtanlage (Niederdruckverfahren)

a: Luftverdichter; b: Nachkühler, c: Schaltventile, d,e: Reversing-Exchanger; f: Rückschlagklappen; g: Drucksäule; h: Hauptkondensator; i: Obere Säule; k,m,p: Wärmetauscher; l: Expansionsturbine; n: Kältemittelverdampfer; o: Kältemaschine; q: Kompressor; r: Nachverdichter; s,t: Nachkühler, u: Drosselventil; v,w: Kohlenwasserstoffabsorber; x: Sauerstoffpumpe

- Einleitung
- 2 Luftverflüssigung (LINDE-Verfahren, Schritt 1)
- 3 Grundlagen technischer Rektifikationen
- Kryogene Luftzerlegung (LINDE-Verfahren, Schritt 2)
- 6 Alternative: Pressure Swing Adsorption (PSA)
- 6 Produkte: Verwendung, Produktion, Kosten
- 7 Literatur, Quellen

Pressure Swing Adsorption* (PSA)


- ▶ Prinzip: selektive N₂-Adsorption an Zeolithen
 - kinetische Durchmesser: $N_2/O_2 = 364/346$ pm
 - Quadrupolmomente: $Q_{ij}(N_2) \approx 4 \times Q_{ij}(O_2)$ • selektive Bindung von N an Li⁺ auf S.III
 - \bullet selektive Bindung von N_2 an Li^+ auf S-III
- ► Zeolith: Li-LSX (low silicat X/Fauajasit)
 - Modul (Si:Al) = $1 \mapsto$ Kationen-reich
 - Li-Positionen:
 - Li-I (D6R) und Li-II (6R) nicht zugänglich
 - Li-III relevant \mapsto nur 30 % aller Li⁺
 - Fa. Molecular Sieve Desiccants
- aktuelle Arbeiten:
 - Adsorption von O₂ technologisch sinnvoller
 - Reduktion der benötigten Li-Menge (Kosten!)
- ▶ PSA: Betrieb (p = 3-10 bar; t = 20-60 s)
 - Fa. Can-Gas
- ▶ Vor/Nachteile gegenüber kryogener Trennung
 - \checkmark weniger E-intensiv
 - 🗶 nur kleinere Anlagen möglich
 - ✗ Gase weniger rein (nur %-Bereich)

C. Röhr: VL Technische AC

^{*}Druck-Wechsel-Adsorption

Reinheiten, Alternative Trennprozesse

- gasförmig, flüssig/tiefkalt
- ► Membranverfahren
 - Trennung über spezielle Polymermembranen
 - nur für geringe Mengen
 - teuer
 - schlechte Gasreinheiten
- ▶ O₂ als Koppelprodukt ...
 - \bullet ... der elektrochemischen $\mathrm{H}_2\mathrm{O}\text{-}\mathrm{Elektrolyse}$

- Einleitung
- 2 Luftverflüssigung (LINDE-Verfahren, Schritt 1)
- 3 Grundlagen technischer Rektifikationen
- Kryogene Luftzerlegung (LINDE-Verfahren, Schritt 2)
- 6 Alternative: Pressure Swing Adsorption (PSA)
- 6 Produkte: Verwendung, Produktion, Kosten
- 7 Literatur, Quellen

Produkte

Verwendung

- ightharpoonup O_2
 - Metallverarbeitung (Stahlgewinnung)
 - Ammoniakverbrennung \mapsto NO \mapsto Salpetersäure/Nitrate
 - Synthesegas-Erzeugung (Kohle-Vergasung)
 - Petrochemie, z.B. Herstellung von Ethylenoxid
 - Schweiß- und Schneidetechnik
 - Erzeugung hoher Temperaturen (Edelsteinsynthesen)
 - Medizin (Atomgeräte), Raketenantrieb, ...
- ightharpoonup N_2
 - Ammoniak-Synthese
 - \bullet Herstellung von Kalkstickstoff (Ca-Cyanamid, ${\rm CaCN}_2)$
 - Inert- und Schutzgas (hohe Reinheit gefordert)
- ► Ar
 - Schutzgas in Schweißtechnik (sehr gute Reinheit nötig)
 - Glühlampenindustrie (auch übrige Edelgase)

Produkte: Produktion, Wirtschaftliches

Haupthersteller

- Linde Plc (U.K.)
- ► Air Liquide (France)
- Air Products and Chemicals (U.S.)
- ► Taiyo Nippon Sanso (Japan)
- Air Water (U.S.)

wichtigste industrielle Gase:

Jahr	O_2	N_2	Ar	O_2	N_2	Ar	alle
	$V \text{ (D) } [10^6 \text{ m}^3]$		Umsatz (W)[10 ⁹ USD]				
2011	6 464	5 848					
2012	6 081	5 679					
2013	$6\ 352$	5 819					
2014	6 618	5 809					
2015	6584	6 099	220				
2016	6 646	6 311					
2017	6 755	6 342		32.0			
2018	6 325	6 682					
2019	6024	6 746					
2020	5 562	6 558		35.5			
2021	6 576	7 065			3.42		
2022	5 901	7 046		34.9		5.32	
2023	5 389	6 922		45.5	3.83		146.1

- Einleitung
- 2 Luftverflüssigung (LINDE-Verfahren, Schritt 1)
- 3 Grundlagen technischer Rektifikationen
- Kryogene Luftzerlegung (LINDE-Verfahren, Schritt 2)
- 6 Alternative: Pressure Swing Adsorption (PSA)
- 6 Produkte: Verwendung, Produktion, Kosten
- 7 Literatur, Quellen

Literatur

- ► Ch. Windmeier, R. F. Barron, *Cryogenic Technology* ("Ullmann", Wiley-VCH, 2013).
- ▶ B. Lohrengel: Thermische Trennverfahren: Trennung von Gas-, Dampf- und Flüssigkeitsgemischen, deGruyter Studium (2023).
- ▶ P. Grassmann, F. Widmer, H. Sinn: Einführung in die thermische Verfahrenstechnik deGruyter (1997) [TC 300/4].
- K. H. Büchel, H.-H. Moretto, P. Woditsch: Industrial Inorganic Chemistry, Wiley VCH (2000).
- M. Bertau, A. Müller, P. Fröhlich, M. Katzberg: Industrielle Anorganische Chemie, Wiley VCH, (2013). [AC 570/6a]
- Links zu div. Herstellern auf ruby