II/7: Komplexometrische Bestimmung von Mn LA-AGP 2023

Markus Otteny

Folien von Katharina Köhler

Gliederung

Einleitung

Quantitative Bestimmung von Mn

Theorie
Durchführung
Auswertung
Tipps

Literatur

Gliederung

Einleitung

Quantitative Bestimmung von Mn

Theorie
Durchführung
Auswertung
Tipps

Literatur

Einleitung

Aus dem Seminar zur ersten Quanti bekannt:

- Ziel
- Methoden
- Prinzipien

Voraussetzungen

Einleitung

Aus dem Seminar zur ersten Quanti bekannt:

- ► Ziel Wie viel (m) ist drin?
- Methoden Titration
- Prinzipien

Verbrauch einer Reagenzlösung messen (Bürette) \rightarrow mit $n = c \cdot V$ und $m = M \cdot n$

Voraussetzungen

Reaktion muss schnell, vollständig und eindeutig sein stabile Maßlösung Äquivalenzpunkt \simeq Endpunkt der Titration

Klassifizierung:

- 1. Reaktionstyp
- 2. Endpunkterkennung
- 3. Titrationsart

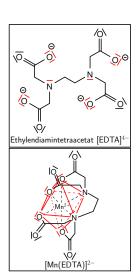
Klassifizierung:

- 1. Reaktionstyp
 - Komplexbildungstitration
- 2. Endpunkterkennung
 - chemischer Indikator
- 3. Titrationsart
 - Inverse Titration

Gliederung

Einleitung

Quantitative Bestimmung von Mn

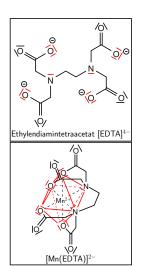

Theorie
Durchführung
Auswertung
Tipps

Literatuu

Theorie

Komplexbildung:

$$\underbrace{\left[\underline{\mathsf{Mn}}(\mathsf{H}_2\mathsf{O})_6 \right]^{2+} + \left[\mathsf{EDTA} \right]^{4-}}_{\mathsf{farblos}} \quad \Longleftrightarrow \quad \underbrace{\left[\underline{\mathsf{Mn}}(\mathsf{EDTA}) \right]^{2-} + 6\mathsf{H}_2\mathsf{O}}_{\mathsf{farblos}}$$


Theorie

Komplexbildung:

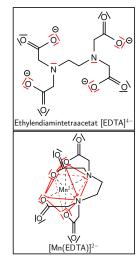
$$\underbrace{\left[\text{Mn}(\text{H}_2\text{O})_6\right]^{2+} + \left[\text{EDTA}\right]^{4-}}_{\text{farblos}} \iff \underbrace{\left[\text{Mn}(\text{EDTA})\right]^{2-} + 6\text{H}_2\text{O}}_{\text{farblos}}$$

Indikation mit Resorcin:

Resorcin + $H_2O_2 \xrightarrow{Mn^{2+}-Kat.} rotes Ox.-Produkt$

Theorie

Komplexbildung:


$$\underbrace{\left[\mathsf{Mn}(\mathsf{H}_2\mathsf{O})_6\right]^{2+} + \left[\mathsf{EDTA}\right]^{4-}}_{\text{farblos}} \iff \underbrace{\left[\mathsf{Mn}(\mathsf{EDTA})\right]^{2-} + 6\mathsf{H}_2\mathsf{O}}_{\text{farblos}}$$

Indikation mit Resorcin:

Resorcin + $H_2O_2 \xrightarrow{Mn^{2+}-Kat.} rotes Ox.-Produkt$

Inverse Titration:
 Maßlösung (EDTA) im Erlenmeyerkolben,

 Probelösung in der Bürette.

► Ein Komplex besteht aus einem Zentralatom und Liganden.

- Ein Komplex besteht aus einem Zentralatom und Liganden.
- Liganden verfügen über mindestens ein freies Elektronenpaar (Lewis-Base).

- Ein Komplex besteht aus einem Zentralatom und Liganden.
- Liganden verfügen über mindestens ein freies Elektronenpaar (Lewis-Base).
- Das Zentralatom ist vorwiegend eine Übergangsmetallion (Lewis-Säure).

- ► Ein Komplex besteht aus einem Zentralatom und Liganden.
- Liganden verfügen über mindestens ein freies Elektronenpaar (Lewis-Base).
- Das Zentralatom ist vorwiegend eine Übergangsmetallion (Lewis-Säure).
- Die Bindung zwischen Zentralatom und Liganden kann als dative Bindung im Sinne eines Lewis-Säure-Base-Addukts beschrieben werden:

$$M^{\delta+} \longleftarrow :L$$

- Ein Komplex besteht aus einem Zentralatom und Liganden.
- Liganden verfügen über mindestens ein freies Elektronenpaar (Lewis-Base).
- Das Zentralatom ist vorwiegend eine Übergangsmetallion (Lewis-Säure).
- Die Bindung zwischen Zentralatom und Liganden kann als dative Bindung im Sinne eines Lewis-Säure-Base-Addukts beschrieben werden:

$$M^{\delta+} \longleftarrow :L$$

 In der Summenformel von Komplexen werden Zentralatom und Liganden in Eckige Klammern geschrieben.

$$[M(L)_x]^{\pm n}$$

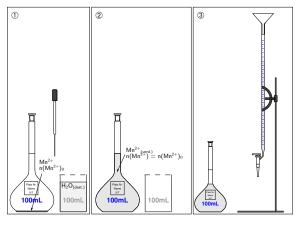
 Chelat bzw. mehrzähnige Liganden sind Moleküle, die mit mehreren ihrer Atome (2 – 6) an das Zentralatom binden können.

- Chelat bzw. mehrzähnige Liganden sind Moleküle, die mit mehreren ihrer Atome (2 – 6) an das Zentralatom binden können.
- Chelate sind aufgrund des Chelat-Effekts stabiler als analoge Komplexe mit einzähnigen Liganden:

- Chelat bzw. mehrzähnige Liganden sind Moleküle, die mit mehreren ihrer Atome (2 – 6) an das Zentralatom binden können.
- Chelate sind aufgrund des Chelat-Effekts stabiler als analoge Komplexe mit einzähnigen Liganden:
 - 1. Thermodynamisch: Entropiezunahme.

$$\underbrace{\left[\mathsf{Mn}(\mathsf{H}_2\mathsf{O})_6\right]^{2+} + \left[\mathsf{EDTA}\right]^{4-}}_{\text{2 Teilchen}} \quad \stackrel{\longleftarrow}{\longleftarrow} \quad \underbrace{\left[\mathsf{Mn}(\mathsf{EDTA})\right]^{2-} + 6\mathsf{H}_2\mathsf{O}}_{\text{7 Teilchen}}$$

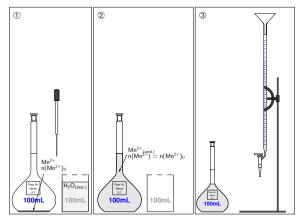
- Chelat bzw. mehrzähnige Liganden sind Moleküle, die mit mehreren ihrer Atome (2 – 6) an das Zentralatom binden können.
- Chelate sind aufgrund des Chelat-Effekts stabiler als analoge Komplexe mit einzähnigen Liganden:
 - 1. Thermodynamisch: Entropiezunahme.


$$\underbrace{[\mathsf{Mn}(\mathsf{H}_2\mathsf{O})_6]^{2+} + [\mathsf{EDTA}]^{4-}}_{2 \; \mathsf{Teilchen}} \quad \longleftarrow \quad \underbrace{[\mathsf{Mn}(\mathsf{EDTA})]^{2-} + 6\mathsf{H}_2\mathsf{O}}_{7 \; \mathsf{Teilchen}}$$

 Kinetik: Es müssen mehrere Bindungen gebrochen werden um einen Liganden zu entfernen. Wahrscheinlichkeit für sofortigen Rekombination höher als für Dissoziation.

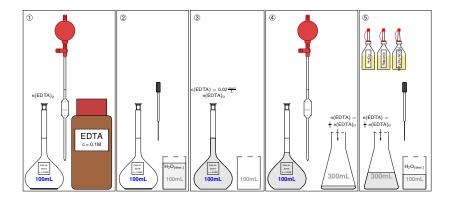
- $\mathsf{II}/\mathsf{7}$: Komplexometrische Bestimmung von Mn
- Quantitative Bestimmung von Mn
 - └ Durchführung

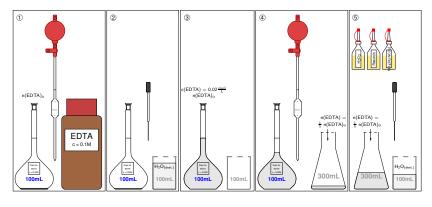
Durchführung


sauberen, beschrifteten 100 mL Messkolben mit Stopfen am Vorabend des Versuchs beim Assistenten abgeben. Sonst keine Durchführung möglich!

- $\ensuremath{\text{II}/7}$: Komplexometrische Bestimmung von Mn
- Quantitative Bestimmung von Mn
 - └ Durchführung

Durchführung

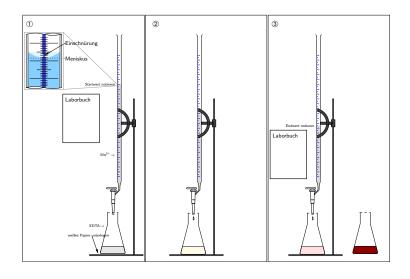

sauberen, beschrifteten 100 mL Messkolben mit Stopfen am Vorabend des Versuchs beim Assistenten abgeben. Sonst keine Durchführung möglich!


① Messkolben mit $V(Mn^{2+})$ =unbekannt und $n(Mn^{2+})_0$ wird vom Assistenten ausgegeben; ② Messkolben bis zur Marke mit $H_2O_{(dest.)}$ auffüllen, <u>schütteln</u>; ③ Teil der Probelösung in Bürette überführen.

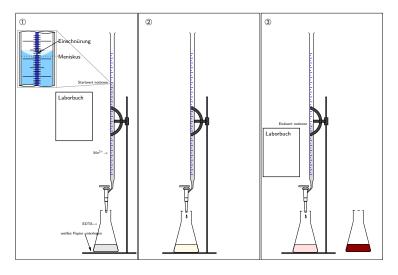
$\ensuremath{\mathsf{II}/7}$: Komplexometrische Bestimmung von Mn

- Quantitative Bestimmung von Mn
 - Durchführung

- II/7: Komplexometrische Bestimmung von Mn
- Quantitative Bestimmung von Mn
 - └ Durchführung



① 20 mL (Vollpipette) der ausstehenden EDTA-Maßlösung $(c=0.1^{mol/L})$ in einen Messkolben (100 mL) überführen; ② Messkolben bis zur Marke mit $H_2O_{(dest.)}$ auffüllen, schütteln; ③ diese verdünnte EDTA-Maßlösung hat nun eine Konzentration von $c=0.02^{mol/L}$; ④ 20 mL (Vollpipette) dieser EDTA-Maßlösung $(c=0.02^{mol/L})$ in Erlenmeyerkolben überführen; Maßlösung auf ca. 100 mL mit $H_2O_{(dest.)}$ auffüllen, H_2O_2 , Resorcin und $NH_4[NH_2CO_2]$ zugeben (pH=8-10).


II/7: Komplexometrische Bestimmung von Mn

Quantitative Bestimmung von Mn

Durchführung

- ${\sf II}/7$: Komplexometrische Bestimmung von Mn
- —Quantitative Bestimmung von Mn
 - Durchführung

 ${\tt ①}$ Startwert notieren; ${\tt ②}$ Lösung ist "Weißweinfarben"; ${\tt ③}$ am Endpunkt (Endwert aufschreiben) "Roséfarben", schlägt nach der Titration schnell in "Rotweinfarben" um.

Auswertung

$$[Mn(H_2O)_6]^{2+} + [EDTA]^{4-} \longrightarrow [Mn(EDTA)]^{2-} + 6H_2O$$

Gegeben:

Gesucht:

$$M(Mn) = 54.94 \text{ g/mol}$$

 $c(EDTA) = 0.02 \text{ mol/L}$
 $V(EDTA) = 20 \text{ mL}$

$$m(Mn) = ? mg$$

Auswertung

$$[Mn(H_2O)_6]^{2+} + [EDTA]^{4-} \longrightarrow [Mn(EDTA)]^{2-} + 6H_2O$$

Gegeben:

$$M(Mn) = 54.94 \text{ g/mol}$$

 $c(\text{EDTA}) = 0.02 \text{ mol/L}$
 $V(\text{EDTA}) = 20 \text{ mL}$

m(Mn) = ? mg

Gemessen:

$$V(\mathsf{Mn}^{2+})_{\varnothing} = X \mathsf{mL}$$

└ Auswertung

 $n = c \cdot V$ die Stoffmenge der vorgelegten EDTA-Maßlösung berechnen:

$$\begin{split} \textit{n}(\mathsf{EDTA}) &= \textit{c}(\mathsf{EDTA}) \cdot \textit{V}(\mathsf{EDTA}) \\ \textit{n}(\mathsf{EDTA}) &= 0.02 \ ^{\mathsf{mol}}\!/_{\mathsf{L}} \cdot 20 \cdot 10^{-3} \mathsf{L} = 0.4 \cdot 10^{-3} \ ^{\mathsf{mol}} \\ &= 0.4 \ ^{\mathsf{mmol}}. \end{split}$$

▶ $n = c \cdot V$ die Stoffmenge der vorgelegten EDTA-Maßlösung berechnen:

$$\begin{split} n(\mathsf{EDTA}) &= c(\mathsf{EDTA}) \cdot V(\mathsf{EDTA}) \\ n(\mathsf{EDTA}) &= 0.02 \ ^{\mathsf{mol}}\!/_{\mathsf{L}} \cdot 20 \cdot 10^{-3} \mathsf{L} = 0.4 \cdot 10^{-3} \ \mathsf{mol} \\ &= 0.4 \ \mathsf{mmol}. \end{split}$$

Am Umschlagspunkt bzw. Äquivalenzpunktgilt:

$$n(EDTA) = n(Mn^{2+})$$

 \Rightarrow 0.4 mmol Mangan befanden sich in X mL Probelösung

$$c(\mathsf{Mn}^{2+}) = \frac{0.4 \; \mathsf{mmol}}{X \; \mathsf{mL}}$$

 \Rightarrow pro 100 mL enthalten somit

$$n(\text{Mn}^{2+})_{\text{gesamt}} = \frac{0.4}{X} \frac{\text{mmol}}{\text{ml}} \cdot 100 \text{ mL} = \frac{40}{X} \text{mmol}$$

▶ $n = c \cdot V$ die Stoffmenge der vorgelegten EDTA-Maßlösung berechnen:

$$n(\text{EDTA}) = c(\text{EDTA}) \cdot V(\text{EDTA})$$

 $n(\text{EDTA}) = 0.02 \text{ mol/L} \cdot 20 \cdot 10^{-3} \text{L} = 0.4 \cdot 10^{-3} \text{ mol}$
 $= 0.4 \text{ mmol}.$

Am Umschlagspunkt bzw. Äquivalenzpunktgilt:

$$n(\mathsf{EDTA}) = n(\mathsf{Mn}^{2+})$$

 \Rightarrow 0.4 mmol Mangan befanden sich in X mL Probelösung

$$c(\mathsf{Mn}^{2+}) = \frac{0.4 \; \mathsf{mmol}}{X \; \mathsf{mL}}$$

 \Rightarrow pro 100 mL enthalten somit

$$n(\text{Mn}^{2+})_{\text{gesamt}} = \frac{0.4}{X} \frac{\text{mmol}}{\text{ml}} \cdot 100 \text{ mL} = \frac{40}{X} \text{mmol}$$

 $M = M \cdot n$ die gesuchte Masse m(Mn) bestimmen:

$$m(\mathsf{Mn}^{2+}) = M(\mathsf{Mn}) \cdot n(\mathsf{Mn}^{2+})_{\mathsf{gesamt}}$$

```
II/7: Komplexometrische Bestimmung von Mn

—Quantitative Bestimmung von Mn

— Tipps
```

► Bürette darf kein Rest-NaOH der Analyse II/6 mehr enthalten, sonst fällt MnO₂ aus!

- Bürette darf kein Rest-NaOH der Analyse II/6 mehr enthalten, sonst fällt MnO₂ aus!

- Bürette darf kein Rest-NaOH der Analyse II/6 mehr enthalten, sonst fällt MnO₂ aus!
- ► Ausgabebereich m(Mn): 150 200 mg \hookrightarrow berechnet $V(Mn)_{min}$ und $V(Mn)_{max}$.
- ACHTUNG Gleichgewichtsreaktion! Die Oxidation des Resorcins läuft ab, sobald sich H₂O₂ im Kolben befindet, sie ist nur kinetisch gehemmt. → zügig arbeiten.

- Bürette darf kein Rest-NaOH der Analyse II/6 mehr enthalten, sonst fällt MnO₂ aus!
- ► Ausgabebereich m(Mn): 150 200 mg \hookrightarrow berechnet $V(Mn)_{min}$ und $V(Mn)_{max}$.
- Falls der Endpunkt schlecht zu erkennen sein sollte, kann das H_2O_2 auch erst kurz vor Erreichen des Endpunkts zugegeben werden [bzw. ab Erreichen von $V(Mn)_{min}$].

Gliederung

Einleitung

Quantitative Bestimmung von Mn

Theorie

Durchführung

Auswertung

Tipps

Literatur

Literatur

- Praktikumsskript Homepage
- Schweda, Eberhard, Gerhart Jander, Ewald Blasius.
 Jander/Blasius Anorganische Chemie. 16., völlig neu bearb.
 Aufl. Stuttgart: Hirzel, 2012.
- Jander, Gerhart, Karl Friedrich Jahr. Massanalyse: Theorie Und Praxis Der Klassischen Und Elektrochemischen Titrierverfahren. 8., durchges. und erg. Aufl. Berlin: de Gruyter, 1959.
- Küster-Thiel, Rechentafeln für die Chemische Analytik, Walter de Gruyter. Berlin New York, 1982
- AC Lehrbücher
 z.B. Riedel, HoWi